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Abstract

Resonant elastic metamaterials are artificial material systems that exhibit unique dynam-
ical properties shaped by the intrinsic interaction between resonances and traveling
dispersive waves. In this chapter, we provide a technical review of the recently proposed
concept of dissipation emergence in elastic metamaterials. This concept is termed
“metadamping.” Unlike conventional materials used to dampen vibrations where
the damping capacity is affected by the atomic configuration, defects, and/or rheological
properties, here the level of dissipation is controlled via the dynamics of the
metamaterial’s resonant substructures. In this manner, it is possible to create a netmaterial
system that is both stiff and highly damped, to absorb vehicle vibrations for example. The
chapter starts with a motivation and introduction of metadamping, and then presents an
in-depth analysis and parametric study ofmetadamping in the context of both locally and
nonlocally resonant elastic metamaterials modeled as mass-spring-dashpot systems. The
effect of the core damping model (e.g., viscous vs nonviscous) is also examined. Finally, a
review is given of metadamping in a pillared beam that has recently been investigated by
experiments, simulations, and theory.

1. PHONONIC MATERIALS: DYNAMICAL DESIGN AT THE
MATERIAL LEVEL

1.1 Material Dynamics
The observed properties of materials—acoustic, mechanical, etc.—are the

cumulative result of many small-scale processes and interactions occurring

within the material microstructure. Many technological applications require

extraordinary materials that satisfy exceptional demands. Thus, the ability to

tailor the microstructure and, consequently, the material behavior for appli-

cations is desirable. Chemistry represents a conventional avenue for manip-

ulating the microstructure at the atomic/molecular/grain-boundary scale to

achieve the desired material performance. Alternatively, especially with the

advent of additive manufacturing technology, the internal structure may be

designed and implemented at the macroscopic level to elicit unique, even

counterintuitive, performance from the resulting architected material—

with the possibility of extending the frontier of material behavior. Here,

we focus on the dynamical aspects of such materials, termed phononic

materials, which include phononic crystals (PC) and acoustic/elastic meta-

materials (Kushwaha, Halevi, Dobrzynski, & Djafari-Rouhani, 1993; Liu

et al., 2000; Sigalas & Economou, 1992). And in particular, we focus on

the recently proposed concept of metadamping which allows us to design

the material architecture in a way that renders it more dissipative than the

nominal case without such architecture (Hussein & Frazier, 2013b).
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To confine the discussion to within a manageable scope, we examine here

only a sample of their physics and potential utility.

Phononic materials, generally, emerge from the periodic arrangement of

small-scale building blocks—reminiscent of molecules in natural crystals—

which, through scattering/interference and/or resonance phenomena, act

to control the propagation of acoustic/elastic plane waves. Fundamentally,

over specific frequency ranges, i.e., the pass bands, a phononic material is

transparent to vibrational plane waves, which propagate at different speeds

in contrast to the constant sonic speeds of many nondispersive conven-

tional materials. Outside these frequency bands, i.e., within the stop bands

or band gaps, the material internal structure scatters and/or localizes the

wave energy, prohibiting transmission in all or specific directions. Wave-

guides and acoustic filters are two basic applications of this behavior. How-

ever, through careful design of building blocks forming the material’s internal

structure, the unique dynamics of phononic materials may be exploited in a

myriad of original applications [e.g., flat acoustic lenses (Yang et al., 2004;

Zhang & Liu, 2004), acoustic/elastic cloaks (Brun, Guenneau, & Movchan,

2009; Cummer & Schurig, 2007), phononic subsurfaces for flow control

(Hussein, Biringen, Bilal, & Kucala, 2015), to name a few] (Deymier, 2013;

Hussein, Leamy, & Ruzzene, 2014; Khelif & Adibi, 2015; Laude, 2015;

Phani & Hussein, 2017).

One of the earliest and simplest examples of a phononic material is the

one-dimensional medium composed of periodically alternating layers of dif-

fering composition—mass-density and elasticity—such as shown in Fig. 1A

(Kohn, Krumhansl, & Lee, 1972; Lee & Yang, 1973; Sun, Achenbach, &

Herrmann, 1968). Within a homogeneous medium, a vibrational wave of

arbitrary frequency ω, and wavenumber (i.e., spatial frequency) κ, propa-
gates at a constant speed, c0 ¼ ω/κ. As can be seen in Fig. 1A, within a

phononic material, waves of different frequencies travel at different

speeds—a phenomenon referred to as dispersion—indicative of a nonlinear

relationship between ω and κ. For the layered medium, this is accommo-

dated by the superposition of waves transmitted and reflected at the layer

interfaces. Moreover, over specific frequency ranges, the scattering/inter-

ference is sufficient to prevent the associated waves from propagating

within the material. Fig. 1C illustrates each of these scenarios where the

displacement profiles are plotted over several unit cells, the fundamental

repeating structure. Within the pass band, the wave propagates through

the phononic material such that the displacement profile encompasses

the entire–theoretically infinite—domain. In contrast, within the band
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gap, the wave amplitude decays with distance and the displacement nodes

remain fixed in space for all time.

In Fig. 1A, we present the results of simulation and analytics. For the sim-

ulation, a layered medium composed of 100 cells is disturbed by an impulse

at the mid-span, producing a wide spectrum of waves that propagate away

from the site of initial disturbance. Prior to reaching either end of the

medium, the waves interact only with each other and the underlying mate-

rial periodicity of the system, mimicking an infinite medium. Under these

conditions, a Fourier transform of the displacement in space (with eiκx) and

time (with e�iωt) produces the density plot shown, where the narrow, darker

regions identify waves with spectral characteristics (i.e., ω and κ) suitable for
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Fig. 1 (A) Dispersion diagram of a layered medium (continuous model) as determined
from numerical and analytical treatments. (B) Dispersion diagram of a mass-spring sys-
tem (discrete model) determined analytically. (C) Displacement profile in corresponding
finite layered medium at different frequencies illustrating the contrast in response
between the pass band (top) and band gap (bottom) cases.
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transmission through the layered medium and the brighter regions represent

incompatible characteristics. The color map in Fig. 1A and similar diagrams

produced via simulation are instructive in revealing the dispersion properties

of the relevant phononic material design but are computationally expensive,

especially for two- and three-dimensional systems with complex unit-cell

designs. Alternatively, the periodic arrangement of the material constituents,

reminiscent of molecules in natural crystals, opens phononic materials

to theoretical analysis via Floquet–Bloch theorem (henceforth simplified

to Bloch) from solid-state physics. For one-dimensional elastodynamic

problem, this is expressed as (Bloch, 1929; Floquet, 1883):

uðx, tÞ¼ ~uðxÞeiðκx�ωtÞ (1)

where u(x, t) is the displacement. The amplitude function ~uðxÞ has the same

periodicity at the underlying medium, x2 [0,�a] where a is the lattice spac-

ing or unit-cell length. As a consequence, u(x� na, t)¼ u(x, t)e�iκna for any

arbitrary integer n, which permits the solution for x2 ð�∞,∞Þ to be deter-
mined from the analysis of a finite segment of material of dimension a—the

unit cell. This modeling concept applies to two- and three-dimensional sys-

tems as well. By considering only a single unit cell rather than the potential

myriad of cells, Bloch’s theorem greatly reduces computation demands and

yields a compact, theoretical representation of the wave propagation char-

acteristics. Fig. 1A illustrates excellent agreement between numerical (den-

sity plot) and analytical (smooth curves) results for the layered medium.

As mentioned previously, the layered medium is one of the most ele-

mentary practical representations of a phononic material which could serve

as a simple demonstration. However, in what follows, we utilize simple

lumped-parameter models that capture all the essential physics and make

the connection between unit-cell configuration and performancemore acces-

sible. Indeed, in regard to the ability to capture the essential physics of a prob-

lem, as shown in Fig. 1B, the dispersion diagram of the corresponding

lumped-parameter model closely resembles that of its continuum counterpart

shown in Fig. 1A. This model uses masses and springs to represent each layer

of the unit cell, with eachmass and spring defined asm¼ ρAL and k¼ EA/L,

respectively, where ρ is the density, E is the Young’s modulus, and A and L

denote the rod cross-sectional area and length, respectively.

1.2 Consideration of Material Damping
Inherent to every material, damping mechanisms (e.g., friction) dissipate the

wave energy, affecting the propagation and spatial attenuation characteristics
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(Crandall, 1970). However, damping is often unaccounted for in theoretical

analysis, removing a practical aspect of material performance and a mean to

control that performance. In the following, we discuss the physics and utility

of damping in phononic materials [for further reading, see, e.g., Hussein

(2009b), Hussein and Frazier (2010), Frazier and Hussein (2016), Al

Ba’ba’a and Nouh (2017)]. To this end, we primarily use the mass-spring-

damper model shown in Fig. 2, which forms the basis of one-dimensional

phononic material similar to the discrete example discussed previously.

The set of equations that describe the motion of each degree of freedom

in the unit cell are collected in matrix form as [see Hussein and Frazier

(2013a) and Frazier and Hussein (2016) for the derivations]

M€u +C _u +Ku¼ f (2)

where the massM, viscous damping C, and stiffness K matrices are, respec-

tively, given by

M¼m2

1=rm 0 0

0 1 0

0 0 0

2
64

3
75 (3a)

C¼ c2

1=rc �1=rc 0

�1=rc 1=rc +1 �1

0 �1 1

2
64

3
75 (3b)

K¼ k2

1=rk �1=rk 0

�1=rk 1=rk +1 �1

0 �1 1

2
64

3
75 (3c)

consistent with the displacement degrees of freedom uT ¼ [u1 u2 u0]. The

superposed dot represents differentiation with respect to time. The forces
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Fig. 2 Discrete model of a phononic material constructed from a unit cell of two inter-
acting masses which repeats infinitely along one dimension.
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applied by neighboring cells are organized in fT ¼ [f1 f2 f0]. Here, we intro-

duce the material property relations rm¼m2/m1, rc¼ c2/c1, rk¼ k2/k1. Note,

Eq. (2) represents the equation of motion of a single unit cell viewed as a

finite entity. To model the dynamics of the corresponding infinite, periodic

medium, we apply Bloch boundary conditions which establish a relationship

(perpetuating in space ad infinitum) between the unit-cell boundary states

and those of its neighbors. We define a condensed displacement vector

containing only the essential degrees of freedom, that is, the internal and

essential boundary displacement, ûT ¼ ½u1 u2�. From Bloch’s theorem,

u0 ¼ u1e
�iκa. Thus, the condensed and full set of displacement degrees of

freedom are related via the transformation, T, as follows

u¼Tû¼
1 0

0 1

e�iκa 0

2
64

3
75 u1

u2

� �
: (4)

When applied to the equation of motion, the transformation yields

M̂€̂u + Ĉ _̂u + K̂û¼ 0 (5)

with M̂¼THMT, Ĉ¼THCT, and K̂¼THKT, where the superscript

“H” represents the complex transpose operation. Given that Bloch analysis

is concerned with free wave motion, we set THf ¼ 0.

From a theoretical perspective, the wave frequency is often assumed to be

strictly real-valued regardless of the damping condition (Castanier & Pierre,

1993; Collet, Ouisse, Ruzzene, & Ichchou, 2011; Farzbod & Leamy, 2011;

Langley, 1994a; Mead, 1973; Merheb et al., 2008; Moiseyenko & Laude,

2011). Consequently, according to Eq. (1), wave attenuation (due to inter-

ference and/or damping) may only occur over the propagation distance as the

wavenumber is free to be complex-valued, κ ¼ κR + iκI. This may be con-

sidered the controlled laboratory perspective, that is, the material response is

what may be expected when exciting an extended, but finite, structure at the

boundary at a prescribed frequency; hence supplying continuous injection of

wave energy. However, if we are interested in the inherent material response

following an initial input of energy, our analysis of wave propagation in

damped phononic materials allows the temporal frequency to be complex.

In this context, waves attenuate in space (due to scattering/interference

and resonance) and time (due to material damping). This may be considered

the free-motion perspective as the dynamics stem purely from the response of

the material to an initial disturbance, as opposed to a sustained external
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stimulation. In the absence of damping, the two approaches are equivalent.

Damping reveals the unique dynamics of each operation condition, and in

principle it is possible to solve for an all-complex band structure where both

the frequencies and wavenumbers are complex (Frazier & Hussein, 2016;

Hussein, Frazier, & Abedinnassab, 2013). For real-valued frequencies, the

band-gap effect is unadulterated only in the complete absence of damping

(not seen in practice), otherwise, the band gap closes with the slightest level

of damping. Conversely, for complex-valued frequencies, the impact of wave

interferences is more intact and the band gap remains complete except under

extreme conditions (Frazier & Hussein, 2016; Phani & Hussein, 2013).

For general free wave motion, the displacement solution varies

according to eλtwhere λ is the complex frequency whose real and imaginary

components are to be determined. Modifying Bloch’s theorem accordingly

and subsequently applying the derivatives in Eq. (2) yields the following

quadratic eigenvalue problem in λ

ðλ2M̂ + λĈ + K̂Þû¼ 0 (6)

Here we can utilize the state-space transformation from structural dynamics

(Wagner & Adhikari, 2003) to formulate an eigenvalue problem with twice

the degrees of freedom but linear in construction (Frazier & Hussein, 2015;

Hussein & Frazier, 2010, 2013a). We define the state vector, ŷT¼ ½ _̂u û�,
enabling the state-space transformation

0 M̂

M̂ Ĉ

� �
_̂y +

�M̂ 0

0 K̂

� �
ŷ¼ 0 (7)

Assuming the time-dependence of the state vector is also of the form eλt, we

formulate the following generalized linear eigenvalue problem in λ

λ 0 M̂

M̂ Ĉ

� �
+

�M̂ 0

0 K̂

� �� �
ŷ¼ 0 (8)

In general, the complex eigenvalues take the form

λðκÞ¼�ξðκÞωrðκÞ� iωdðκÞ (9)

Inserting Eq. (9) into eλt, it is apparent that ωd(κ), the damped wave fre-

quency, leads to temporal oscillations and ξ(κ)ωr(κ) is responsible for the

decay of the wave amplitude over time. Specifically, the quantity ξ(κ) is
the dimensionless damping ratio (loss factor) and ωr(κ) is termed the
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“resonant frequency.” The wavenumber-dependent damping ratio relation

is extracted from the complex eigenvalues as follows

ξðκÞ¼�Re½λðκÞ�
jλðκÞj (10)

Naturally, in the absence of damping, ξ(κ) ¼ 0 and ωd(κ) is identical to the

undamped solution ω(κ). In addition, due to the method of extraction, the

maximum value that ξ(κ) may attain over a range of wavenumbers is unity,

which requires that ωd(κ) ¼ 0 over the corresponding κ range.

Fig. 3A and B shows the damped frequency and damping ratio disper-

sion diagrams for specific normalized damping intensities β/ω0, including

the undamped scenario β/ω0 ¼ 0 for reference. The ratio β ¼ c2/m2 is a

measure of the damping intensity and ω2
0¼ k2=m2 is the natural frequency

of the oscillator m2. The specific material property ratios selected for this

example are rm ¼ 3, rc ¼ 1/2, rk ¼ 1, and ω0 ¼ 65.32 rad/s. Notice that

viscous damping compacts the frequency band structure, affecting higher

frequencies more acutely than lower ones. This is corroborated by the

corresponding damping ratios in Fig. 3B which expand as the damping

intensity increases, most rapidly for wavenumbers corresponding to

higher frequencies. In the extreme, we can observe two intriguing phe-

nomena not encountered in real-frequency analysis: band overtaking and

band cut-off (Hussein, 2009b; Hussein & Frazier, 2010; Phani & Hussein,

2013). Band overtaking occurs when frequency bands cross; band cut-off

describes the scenario in which frequency bands do not span the full range

of wavenumbers. In Fig. 3A, we observe a case of band overtaking at

β/ω0 ¼ 0.45. In particular, we observe that the upper band (dashed) drops

at a much faster rate than the lower band (solid) as the corresponding

damping ratio is greater, enabling the overtake. This is quantitatively illus-

trated by tracking the band-gap width as a function of damping intensity,

as illustrated in Fig. 3C. In some cases, if the overtake takes place on an

upper band, a band gap can decrease in width more abruptly (Hussein,

2009b).

In Fig. 3A, we observe that when the level of damping exceeds a certain

value, the lower band gets cut-off in the wavenumber domain, i.e., it does

not span the entire first irreducible Brillouin zone (IBZ), κa 2 [0,�π].
Moreover, since the upper band eventually disappears we get a wavenumber

band gap, i.e., a wavenumber range where waves are prohibited from prop-

agation. This phenomenon is analogous to the well-known concept of a
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frequency band gap. The damping-induced band-overtaking and band cut-

off phenomena clearly present opportunities for design, building on already

existing methodologies at the unit-cell level and/or a combination of the

unit-cell and structural levels. However, both phenomena require substan-

tial levels of prescribed damping.
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2. METADAMPING: DAMPING EMERGENCE

2.1 Locally Resonant Metamaterials
In the previous section, we investigated the dynamics of phononic materials

with and without the influence of damping; however, the continuous and

discrete examples studied thus far have been of the phononic crystal type.

The unit-cell structure of a PC interacts with traveling elastic waves to pro-

mote interferences, opening up band gaps. As a result, there is a dependency

on unit-cell size to open band gaps.

Over the past two decades, metamaterials, whose extraordinary dynamic

andmechanical properties originate froma uniquely tailored internal architec-

ture, have spurred research in the acoustics (Liu et al., 2000), electromagnetics

(Pendry, Holden, Robbins, & Stewart, 1999; Smith, Padilla, Vier, Nemat-

Nasser, & Schultz, 2000), and, more recently, mechanics (Christensen,

Kadic, Kraft, & Wegener, 2015) fields. Among the most intriguing applica-

tions is the possibility of a perfect lens (Pendry, 2000). Returning to our inter-

est in the dynamical aspects of phononic materials, much of the remarkable

properties of metamaterials, such as negative effective mass/density, elastic/

bulk modulus, refractive index, etc.—are often the homogenized manifesta-

tion of subwavelength resonances engineered into each unit cell. These res-

onating bodies act to localize (rather than scatter/reflect) the wave energy to

open band gaps andmay take the formof heavy, elastically coated spheres in an

epoxy matrix (Liu et al., 2000), pillars (Bilal & Hussein, 2013; Pennec, Djafari-

Rouhani, Larabi, Vasseur, & Ladky-Hennion, 2008;Wu,Huang, Tsai, &Wu,

2008), voids in an epoxy matrix (Wang, Wen, Wen, Shao, & Liu, 2004),

localized oscillators distributed along a rod (Al Ba’ba’a & Nouh, 2017;

Khajehtourian & Hussein, 2014), among other possibilities. In the following,

we investigate the utility of locally resonant metamaterials in addressing a

long-standing materials challenge involving damping.

2.2 Metadamping in Locally Resonant Metamaterials
A variety of applications demand materials with simultaneously high

damping (i.e., vibration/shock suppression) and mechanical stiffness (i.e.,

load-bearing capability); however, for traditional materials, a gain in one

is often at the expense of the other. Consider the load-bearing and damping

properties of steel and rubber as one of many such material comparisons

(see Fig. 4). Following a “best-of-both-worlds” approach, even composites
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composed of stiff and damped constituents are compelled by inherent prop-

erties and filling fraction trade-off to sacrifice one property to promote

the other.

In addition to their previously mentioned attributes and applications in

the absence of material damping, metamaterials may exhibit a greater capac-

ity for wave attenuation than traditional, nonarchitected materials and PCs

when damping is taken into account. This gives metamaterials the potential

to enable very high levels of dissipation with sustained load-bearing capacity.

This emergent damping capacity, termed metadamping (Hussein & Frazier,

2013b), applies across a broad spectrum rather than a narrow set of frequen-

cies and has been demonstrated in metamaterials supporting monopolar

(Frazier & Hussein, 2015) and dipolar (Frazier & Hussein, 2015; Hussein

& Frazier, 2013b) resonances, and resonances in more complex configura-

tions (Antoniadis, Chronopoulos, Spitas, & Koulocheris, 2015; DePauw, Al

Ba’ba’a, & Nouh, 2018). In the following, we illustrate the metadamping

phenomenon, beginning with metamaterials based on local resonance and

then through other architectures.

Fig. 5 shows the initial three material architectures to be considered.

Fig. 5A is a representative phononic crystal which relies exclusively on scat-

tering and interference between forward and backward propagating waves

for its dispersive properties, notably, the band gap. Fig. 5B and C are two

prototypical metamaterial designs whose dynamics are affected by local
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resonances, particularly dipolar and monopolar, in addition to wave inter-

ference due to the periodicity. In acoustics, a monopole radiates vibrational

waves equally well in all directions; thus, the truss structure in the monopole

metamaterial design in Fig. 5C, which equally applies the influence of the

resonator to both ends of the unit cell. A dipole consists of two monopoles

of equal magnitude but opposite phase and separated by a subwavelength

distance so that vibrational waves of opposite phase radiate well in two direc-

tions. This is modeled by the metamaterial unit cell in Fig. 5B. The reader is

referred to the article by Russell, Titlow, and Bemmen (1999) for more

information on monopoles and dipoles.

For each metamaterial model, the equation of motion in Eq. (2) is struc-

turally the same; however, consistent with the unique interaction among the

degrees of freedom of each model, the damping and stiffness matrices are

defined differently from the phononic crystal matrices introduced earlier

(the mass matrix is the same). For the metamaterial with dipolar resonance,

the damping and stiffness matrices become

C¼ c2

1=rc +1 �1 �1=rc

�1 1 0

�1=rc 0 1=rc

2
64

3
75 (11a)

K¼ k2

1=rk +1 �1 �1=rk

�1 1 0

�1=rk 0 1=rk

2
64

3
75 (11b)

Fig. 5 Discrete models of (A) a phononic crystal (utilizing scattering and wave interfer-
ences), and (B) dipolar and (C) monopolar metamaterials (utilizing local resonance).
These lumped-parameter models are simple, yet retain the essential physics of their lab-
oratory counterparts.
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For the metamaterial with monopolar resonance, they are defined as

C¼ c2

1=rc + δ=16
ffiffiffi
δ

p
=4 �ð1=rc + δ=16Þffiffiffi

δ
p

=4 1 � ffiffiffi
δ

p
=4

�ð1=rc + δ=16Þ � ffiffiffi
δ

p
=4 1=rc + δ=16

2
64

3
75 (12a)

K¼ k2

1=rk + δ=16
ffiffiffi
δ

p
=4 �ð1=rk + δ=16Þffiffiffi

δ
p

=4 1 � ffiffiffi
δ

p
=4

�ð1=rk + δ=16Þ � ffiffiffi
δ

p
=4 1=rk + δ=16

2
64

3
75 (12b)

where δ ¼ (a/D)2 is an additional control parameter for the monopolar res-

onance (a denotes the lattice spacing).

With the above construction, the three models share the same transfor-

mation matrix T as the phononic crystal, which, when applied to the equa-

tion of motion, Eq. (2), gives its reduced form in terms of the essential

degrees of freedom, Eq. (5).

To facilitate a proper comparison of material performance, notice that

each model contains the same damping elements and number of degrees

of freedom, i.e., an advantage in the form of more effective damping mech-

anisms and/or more interactions is not held by either model. In addition, the

three models are statically equivalent, that is, they are of equal mass and

effective static stiffness, keff ¼ c20ðm1 +m2Þ=a, where c0 is extracted from

the linear portion of the undamped dispersion diagram where c0 � ω/κ
(see Section 4 for an in-depth analysis of static equivalence). This requires

k1, 2 to differ between the models, however, rk is held constant. Specifi-

cally, for the dipolar metamaterial, ω0 ¼ 46.19 rad/s; for the monopolar

metamaterial with δ ¼ 1, ω0 ¼ 23.09 rad/s. For the present set of material

parameters, c0 ¼ 40.

In Fig. 6, we compare the response of each model to a common damping

intensity, β/ω0¼ 0.1. The results show that there are shifts in the frequency

band diagrams of all three models due to damping which are consistent with

what was seen in Fig. 3A—greater shifts at higher frequencies corresponding

to higher damping ratios. However, despite the static equivalence and

equally prescribed viscous damping, we observe that, compared to the rep-

resentative PC, the metamaterials exhibit higher damping ratio values (i.e.,

higher dissipation) across much of the wavenumber domain. This is an indi-

cation of a considerable amplification, or emergence, of dissipation in locally

resonant metamaterials compared to their phononic crystal counterparts and
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showcases the effect of the internal structure design. For a more comprehen-

sive indicator of the damping capacity of each material model, we determine

the average damping ratio over the whole of the wavenumber domain and

across all modes:

ξavg ¼
1

2π

Z π

0

ξ1ðκaÞ+ ξ2ðκaÞ½ �dκa (13)

The results—ξavg
PC ¼ 0.13 for the phononic crystal, ξavg

DP¼ 0.20 for the dipolar

metamaterial, and ξavg
MP ¼ 0.39 for the monopolar metamaterial—reveal the

superior dissipation performance of metamaterials, particularly those

possessing monopolar resonances. This enhanced dissipation in meta-

materials defines the metadamping phenomenon.

Fig. 7 illustrates the robustness of the metadamping phenomenon by plot-

ting ξavg for various c0 values. In addition, the impact of the parameter δ
unique to the monopolar model is demonstrated. For the case c0 ¼ 40, even

as δ! 0, monopolar metadamping still outperforms the dipolar case.

Fig. 6 Frequency and damping ratio dispersion of statically equivalent [equal mass and
long-wavelength stiffness (equivalent speed of sound)] phononic crystal and
metamaterial models.
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In this section, we have demonstrated the concept of metadamping the-

oretically due to the presence of local resonance in the internal structure of

the phononic material. This finding has far reaching implications on the

design of materials for numerous applications that require the reduction,

mitigation, or absorption of vibrations, shock, and/or sound. While the

analysis has been presented in the context of simple mass-spring-dashpot

periodic chains, it can be readily extended to practical realizations of locally

resonant acoustic metamaterials. Examples include material structures that

utilize: heavy inclusions with compliant coatings, soft inclusions, split-

resonators, inertial amplifiers, pillars, holey cylinders, and suspended masses.

Other concepts for enhancing damping while retaining stiffness may be

applied in conjunction with the inclusion of local resonators leading to an

additive effect. While this discussion has presented metadamping as a desir-

able effect, an awareness and understanding of the phenomenon will aid in

mitigation where it is not advantageous. Finally, while the concept of met-

adamping has been presented in the context of a mechanical problem, in

principle it is also applicable to other disciplines in materials physics that

involve both resonance and dissipation.

3. UNCONVENTIONAL METAMATERIAL DESIGNS

In pursuit of novel functionalities, unconventional metamaterial

configurations have recently emerged that exhibit broader tunability of wave

dispersion features and, at times, offer a pathway for physical realization of

Fig. 7 Metadamping map characterizing the sonic speed dependency of the emergent
increase in damping capacity in resonance-based metamaterials.
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locally resonant mechanisms (Chen, Hu, & Huang, 2017; Liu, Chan, &

Sheng, 2005). The overarching theme of these novel metamaterials is the

combination of phononic features and intrinsic resonators placed in unique

and unprecedented configurations. Among these is the notion of resonator-

to-resonator interaction with examples that range from spring-mass meta-

materials with discretely coupled resonators (Hu, Tang, Das, Gao, &

Liu, 2017) to elastic metamaterial beams with interconnected resonators

(Beli, Arruda, & Ruzzene, 2018). In addition, other configurations feature

the presence of nonlocal resonances which, rather than being confined inside

an outer mass, directly interact with the preceding and following masses in a

periodic chain (DePauw et al., 2018).

3.1 Nonlocal Metamaterial Design
In this section, we investigate a new class of metamaterials which comprises a

nonlocal resonator and combines hybrid attributes from dipolar metamaterials

(DP) and PC (DePauw et al., 2018). The new configuration—henceforth

referred to as nonlocal metamaterial (NL)—consists of two masses m1 and m2.

Each two consecutivemassesm1 are connected via a spring k1, while eachmass

m2 is sandwiched between two neighboring masses m1 and connected to each

of them via a spring k2, as depicted in Fig. 8. It is noted that the PC and DP

configurations may be realized from the NL metamaterial configuration by

setting k1 or one of the k2 springs equal to zero, respectively. The dashpots

c1 and c2 are added in parallel to the respective springs in the damped case

to characterize the energy dissipation in theNLmetamaterial, which is capable

(as will be shown later) of exercising considerably greater metadamping effects

than both the PC and the DP cases with the suitable choice of parameters.

Fig. 8 Discrete model of a nonlocal metamaterial (NL) cell which repeats infinitely along
one dimension.

131Metadamping: Dissipation Emergence



3.2 Dispersion Characteristics and Transitions
We start by highlighting the dispersion characteristics of the undamped NL

metamaterial under both free wave and driven wave conditions. In the most

general form, the undamped dispersion relations are given by

α2ω4�α1ω2 + α0¼ 0 (14)

where α2 ¼ m1m2 and the coefficients α1 and α0 for the different phononic
materials are listed in Table 1.

The general dispersion relation provided in Eq. (14) depicts the free

wave formulation and, for the NL case, reads

ω4� 2ð1+ rmÞ+ rm

rk
α

� �
ω2
0ω

2 +ω4
0rmð1+ 2=rkÞα¼ 0 (15)

where the acousticalω� and opticalω+ branches are given in closed form by

ω2
� ¼ω2

0

2
2ð1+ rmÞ+ rm

rk
α

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1+ rmÞ+ rm

rk
α

� �2

�4rmð1+ 2=rkÞα
s2

4
3
5

(16)

For the free wave formulation, the dispersion curves are obtained by

computing the roots of Eq. (16) over a range of κa 2 [0,π] corresponding
to the IBZ. Upon inspecting the results, it can be observed that the optical

dispersion branch can be manipulated to exhibit a negative or positive group

velocity depending on the choice of parameters, thus resembling either a PC

or a resonant material, respectively. Such a feature implies the presence of a

turning point where the optical branch becomes flat (i.e., ∂ω
∂κ ¼ 0); a phe-

nomenon that has been observed in systems with parametric amplification

(Cassedy, 1967). A similar behavior has also been captured in inertially

amplified locally resonant metamaterials (Al Ba’ba’a, DePauw, Singh, &

Nouh, 2018). The turning point can be analytically extracted by using

Table 1 Expressions for α0 and α1 for Different Phononic Material (α¼ 2ð1� cosκaÞ)
PC DP MP NL

α0 k1k2α k1k2α k1k2α k2(2k1 + k2)α

α1 (k1 + k2)(m1 +m2) k2(m1 + m2) + k1m2α m1k2 +m2ðk1 + δ
16
k2Þα 2k2(m1 + m2) + k1m2α
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the derivative of the dispersion relation in Eq. (15) with respect to κ (Liu &

Hussein, 2012)

4ω3 ∂ω

∂κ
�ω2

0 2 2ð1+ rmÞ+ rm

rk
α

� �
ω
∂ω

∂κ
+2a

rm

rk
sinκa

� �
ω2

� �
+2aω4

0rmð1+ 2=rkÞ sinκa¼ 0 (17)

Given that a flat branch dictates that ∂ω
∂κ ¼ 0, Eq. (17) simplifies to

ω2
0ð1+ 2=rkÞ�ω2=rk

� �
sinκa¼ 0 (18)

which indicates that a zero group velocity exists when sinκa¼ 0 at κa¼ ‘π,
where ‘¼ 0,1,2,… , as well as for the following condition

ω¼ω0

ffiffiffiffiffiffiffiffiffiffiffi
2+ rk

p
(19)

Substituting Eq. (19) into Eq. (15), it can be shown that the relationship

between the stiffness and mass ratios which governs the turning point of the

optical branch is given by
rk¼ 2rm (20)

Alternatively, the same condition associated with the turning point can

be found by equating the roots of the optical branch ω+ in Eq. (16) at κa¼ 0

and κa ¼ π (i.e., α ¼ 0 and α ¼ 4, respectively); which results in

ω+¼ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1+ rmÞ

p
(21a)

ω+¼ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rmð1+ 2=rkÞ

p
(21b)

By equating Eqs. (21a) and (21b), the same condition to that given by

Eq. (20) is found. If 2rm > rk, the NL optical branch behaves in a manner

consistent with resonant metamaterials while for 2rm < rk, it resembles the

optical branch of a PC. As a consequence, the lower and upper bounds of

the resultant band gap, ωl and ωu, depend on whether the NL metamaterial

mimics a PC or a resonant metamaterial. While ωl can always be extracted

from the dispersion solution at κa¼ π, the value of ωuwill obviously depend

on the shape of the optical branch and can correspond to the solution at either

κa ¼ 0 or κa ¼ π. The following two equations summarize all the possible

scenarios and provide comprehensive expressions for ωl and ωu

ωl ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rmð1+ 2=rkÞ

p
,

ffiffiffi
2

p	 

ω0 (22a)

ωu ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1+ rmÞ

p
, max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rmð1+ 2=rkÞ

p
,

ffiffiffi
2

p	 
	 

ω0 (22b)
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It is critical to note that when α ¼ 4 in Eq. (16), the acoustical

branch solution can be shown to be ω� ¼ ffiffiffi
2

p
ω0. It is also evident from

Eqs. (22a) and (22b) that when an NL behaves like a PC, it is possible forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rmð1+ 2=rkÞ

p
to be either greater or less than

ffiffiffi
2

p
. In the rare occasion

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rmð1+ 2=rkÞ

p
<

ffiffiffi
2

p
, this dispersion solution appears in the acous-

tical branch and is otherwise located in the optical branch. In cases where the

upper limit ωu¼
ffiffiffi
2

p
ω0, this requires that rm(1 + 2/rk) < 1, which generates

the following condition

rm <
rk

2+ rk
(23)

which is a subset of the 2rm < rk case with rm being less than unity. Interest-

ingly, at the critical point rm ¼ rk
2+ rk

, the band gap of the NL metamaterial

vanishes and the dispersion relation has the repeated solutions ω¼ ffiffiffi
2

p
ω0

at κa ¼ π (i.e., the discriminant of Eq. (16) becomes equal to zero). In such

a case, theNL dispersion resembles that of a homogenousmonatomic lattice.

To summarize the previous discussion, it is concluded that one of the band-

gap limits in the NL metamaterial has to be located at ω¼ ffiffiffi
2

p
ω0. The dif-

ferent scenarios accompanying the NL dispersion relation discussed here are

graphically summarized in Fig. 9.

For completeness, we also investigate the driven wave formulation

which generates the wavenumber κa as an output to a prescribed fre-

quency, i.e., κa(ω). By recasting Eq. (15) in the form: κa¼ cos�1ΦðωÞ,
the explicit form of the functionΦ(ω) for NL metamaterials can be written as

ΦNL ¼ 1+
rkω2

2rmω2
0

ω2�2ω2
0ð1+ rmÞ

ω2
0ð2+ rkÞ�ω2

� �
(24)

Fig. 9 Dispersion transitions in an NL metamaterial with different mass and stiffness
ratios.
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By inspecting Eq. (24), the presence of an antiresonance in the system

can be determined from the discontinuities in theΦNL function, specifically

the roots of its denominator. The NLmetamaterial has an antiresonance fre-

quency ωR which is given by

ωR ¼ω0

ffiffiffiffiffiffiffiffiffiffiffi
2+ rk

p
(25)

which, as can be seen, is a function of the stiffness ratio rk, for a given ω0. In

addition, the driven wave problem facilitates the process of extracting the

extreme points of the dispersion from the roots of
∂ΦNL

∂ω

∂ΦNL

∂ω
¼ω ω4�2ω2

0ð2+ rkÞω2 + 2ω4
0ð1+ rmÞð2+ rkÞ

� �¼ 0 (26)

where nonzero solutions for ω in Eq. (26) are found as

ω̂� ¼ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2+ rkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2+ rkÞðrk�2rmÞ
pq

(27)

It is worth noting that ωR ¼ω0

ffiffiffiffiffiffiffiffiffiffi
2+ κ

p
is a point of maximum attenua-

tion which corresponds to the discriminant of Eq. (27) being zero in the

case where 2rm ¼ rk. The structure of ΦNL ensures that the value of

ΦNLðω̂�Þ> 1, which in turn provides information regarding extrema of

the imaginary component of the wavenumber κIa, leading to points where

the gradient is zero. The analysis presented here for driven waves can be sim-

ilarly extended to the different types of phononic materials. For conve-

nience, expressions for Φ(ω), ωR, and ω̂ are given in Table 2.

A comparison between the PC, DP, and NL systems is presented in

Fig. 10. The four rows in the figure represent the different dispersion

Table 2 Expressions for Φ for the Phononic Crystal and DP and MP Metamaterials
Φ(ω) ωR ω̂

PC
1+

rkω2

2rmω2
0

�
ω2

ω2
0

�ð1+ rmÞð1+ 1=rkÞ
�

— ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð1+ rmÞð1+ 1=rkÞ

q

DP
1+

rkω2

2rmω2
0

�
ω2�ω2

0ð1+ rmÞ
ω2
0�ω2

�
ω0 No valid solution

MP

1+
rkω2

2rmω2
0

ðω2�ω2
0Þ

ω2
0�ð1+ δ

16
rkÞω2

0
B@

1
CA 4ω0

ffiffiffiffiffiffiffiffiffiffiffi
1

16 + δrk

q
No valid solution
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transitions that are unique to the NL design. The mass and stiffness ratio

combinations [rm, rk] are [3, 1], ½32 ,3�, [1, 3], and ½13 ,1� for Fig. 10A–D, respec-

tively. In each case, the corresponding dispersion diagrams for the PC and

DP systems are shown for comparison. In the latter, while the location of the

branches (as well as the local resonance ωR) changes from one row to the

next, the overall dispersion shapes are preserved.With a focus on the rightmost

column corresponding to the NL metamaterial, and starting with the 2rm > rk
case (Fig. 10A), the dispersion behavior of the NL resembles that of a conven-

tional DPmetamaterial and the resonanceωR ¼ω0

ffiffiffiffiffiffiffiffiffiffi
2+ κ

p
is located inside the

band gap. At the turning point (Fig. 10B), ωR ¼ω0

ffiffiffiffiffiffiffiffiffiffi
2+ κ

p
coincides with the

upper limit of the band gap; canceling out the optical branch as a consequence.

This also reaffirms the result obtained from Eq. (19) when the group velocity
∂ω
∂κ ¼ 0: By revisiting Eq. (24) with 2rm ¼ rk, the numerator and denominator

of the far right term match and the equation reduces to ΦNL¼ 1�ω2

ω2
0

which

explains the lack of anωR in such case. Furthermore, a confined band gap ceases
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to exist. Instead, an unbounded stop band starts immediately atω¼ ffiffiffi
2

p
ω0. For

the case when 2rm< rk, ω̂� represents the Bragg band-gap maximum attenua-

tion frequencywhile ω̂ + reflects an inflectionpoint in theunbounded stopband

region, as captured in Fig. 10C. In the final scenario, at rm ¼ rk
rk +2

, ω̂� coincides

with ω¼ ffiffiffi
2

p
ω0 when the NL behaves akin to a homogenous monatomic

lattice, thus closing the band gap, whereas the inflection point exists at

ω̂ +¼ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1+ rkÞ

p
as can be seen in Fig. 10D.

4. STATIC EQUIVALENCE AT THE LONG-WAVE
SPEED LIMIT

To enable a fair comparison between the dissipation performance of

different phononic materials, the systems should be statically equivalent, i.e.,

exhibit an identical long-wave (sonic) speed c0. This condition has been

imposed in Section 2.2. In this section, we provide a formal derivation of

static equivalence. We start by analytically deriving expressions for c0 corres-

ponding to the different phononic materials considered, from their respec-

tive dispersion relations.

The two solutions for Eq. (14) are given by

ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21�4α2α0

p
2α2

s
(28)

Of interest here is the solution corresponding to the acoustical branch

ω�, which can be rewritten as

ω� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4α2α0

α21

q
2
α2
α1

vuuut (29)

To find c0, the ratio
ω
κ is obtained near κa¼ 0. As can be seen in Table 1,

α0 is a function of the wavenumber κ and its value approaches zero as κa! 0,

resulting in 4α2α0
α2
1

≪1. It is important to note that although α1 may also be a

function of κ, depending on the type of phononic material considered, it

always has a constant nonzero value when α¼ 0. As a result, the assumption

4α2α0
α2
1

≪1 is not affected. Using the binomial approximation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4α2α0

α2
1

q
�

1� 1
2
ð4α2α0

α2
1

Þ, Eq. (29) may be simplified to

ω¼
ffiffiffiffiffi
α0
α1

r
(30)
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Further, by utilizing the identity 1� cosκa¼ 2sin2 κa
2
, and for small

values of κa (i.e., sin2 κa
2
¼

�
κa

2

�2

), obtaining an expression for c0 for the

PC case is straight forward and takes the form

ω¼ κa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2

ðm1 +m2Þðk1 + k2Þ
r

! cPC0 ¼ aωPC
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm

ð1+ rmÞð1+ rkÞ
r

(31)

For the remaining types of phononic materials, a Taylor series approx-

imation around κa¼ 0 is needed to further reduce Eq. (30) since both α0 and
α1 are functions of κa. Now, let us rewrite α0 and α1 as α0 ¼ �α0α and

α1¼ �α1α+ ��α1, respectively, where the corresponding values of the variables

�α0, �α1, and ��α1 can be extracted from Table 1 by matching the coefficients.

Substituting α¼ 4sin2 κa
2
, Eq. (30) now reads

ω¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�α0 sin

2
κa

2

��α1 + 4�α1 sin2
κa

2

vuuut ¼ ffiffiffiffiffiffiffiffiffiffi
f ðκaÞp

(32)

The term under the square root in Eq. (32) can be expanded using a

Taylor series around κa ¼ 0, which yields

f ðκaÞ’ f ð0Þ+ f 0ð0Þκa+ 1

2
f 00ð0ÞðκaÞ2 (33)

where

f 0ðκaÞ¼ 2��α1�α0 sinκa

��α1 + 4�α1 sin2
κa

2

	 
2 (34a)

f 00ðκaÞ¼ 2�α0��α1

�α1ð2cosκa+ cos2κa�3Þ+ ��α1 cosκa

4�α1 sin2
κa

2

	 

+ ��α1

	 
3 (34b)

Upon evaluating the first and second derivatives of f(κa) at κa ¼ 0, it can

be shown that

ω¼ κa

ffiffiffiffiffi
�α0

��α1

r
(35)

and the explicit formulae for the long-wave speed c0 of DP, MP, and NL

metamaterials can be given by

cDP
0 ¼ aωDP

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm

rkð1+ rmÞ
r

(36a)
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cMP
0 ¼ aωMP

0

ffiffiffiffi
rm

rk

r
(36b)

cNL
0 ¼ aωNL

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=rk +1Þ
2ð1+ 1=rmÞ

s
(36c)

The above equations may be rearranged with the long-wave speed c0 as

an input to obtain the corresponding ω0, resulting in

ωPC
0 ¼ cPC0

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1+ rkÞð1+ 1=rmÞ

p
(37a)

ωDP
0 ¼ cDP

0

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rkð1+ 1=rmÞ

p
(37b)

ωMP
0 ¼ cMP

0

a

ffiffiffiffi
rk

rm

r
(37c)

ωNL
0 ¼ cNL

0

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1+ 1=rmÞ
ð2=rk +1Þ

s
(37d)

By setting c0 of the PC as the benchmark for comparison, and

maintaining identical c0 values for the rest of the designs, alternative expres-

sions for the frequency ω0 as a function of ωPC
0 for the metamaterial coun-

terparts can be derived as

ωDP
0 ¼ωPC

0

ffiffiffiffiffiffiffiffiffiffiffi
rk

1+ rk

r
(38a)

ωMP
0 ¼ωPC

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk

ð1+ rmÞð1+ rkÞ
r

(38b)

ωNL
0 ¼ωPC

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rk

ð1+ rkÞð2+ rkÞ

s
(38c)

For instance, if we look specifically at c0¼ 40 (see Fig. 6), using Eq. (31) and

the parameters rm¼ 3, rk¼ 1, and a¼ 1, results inωPC
0 ¼ 65:32: Finally, bymak-

ing use of Eqs. (38a)–(38c), the equivalent frequencies ω0 for each of the DP,

MP, and NL are ωDP
0 ¼ 46:19, ωMP

0 ¼ 23:09, and ωNL
0 ¼ 37:71, respectively.

5. METADAMPING IN NONLOCAL METAMATERIALS

In Section 3, the intriguing features associated with the dispersion

characteristics of undamped NL metamaterials were thoroughly discussed.

Now we examine and highlight the dissipative performance of the NL
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metamaterial in the presence of damping elements, and draw comparisons

with the PC and DP chains (a comparison with the MP system is omitted

for brevity). In the presence of the dashpots c1 and c2, the mass, damping

and stiffness matrices are given by

M¼m2

1=rm 0 0

0 1 0

0 0 0

2
64

3
75 (39a)

C¼ c2

ð1=rc +1=2Þ �1=2 �1=rc

�1=2 1 �1=2

�1=rc �1=2 ð1=rc +1=2Þ

2
64

3
75 (39b)

K¼ k2

ð1=rk +1Þ �1 �1=rk

�1 2 �1

�1=rk �1 ð1=rk +1Þ

2
64

3
75 (39c)

The dispersion characteristic of the dissipative NL metamaterial is obtained

by invoking the Bloch boundary condition via the transformation matrix T

as introduced earlier, and using the state-space formulation to obtain the com-

plex frequencies λ. Similar to the example presented in Fig. 6, all the systems

undergoing comparisons are statically equivalent with a long-wave speed of

c0 ¼ 40 and identical stiffness and mass ratios. Recall that the damping inten-

sity ratio is β/ω0
PC¼ 0.1 fromwhich the damping coefficients are computed as

c2 ¼ βm2 and c1 ¼ c2/rc. Since the NL metamaterial comprises an extra c2
damper in each unit cell when compared to the PC and DP configurations,

the value of c2 is halved to maintain a fair comparison, which is reflected in

the C matrix in Eq. (39b). While keeping the same damping coefficients,

we investigate the metadamping effects with a second set of parameters leaving

rm unchanged and setting rk ¼ 3. The adjusted ω0 values for the second set of

parameters are ωPC
0 ¼ 92:38, ωDP

0 ¼ 80, and ωNL
0 ¼ 50:6.

Figs. 11 and 12 depict the dispersion curves and the damping ratios across

the optical and acoustical bands for the first and second set of parameters,

respectively. It is evident from both figures that the overall drop of the opti-

cal branch in response to increased damping is larger in the NL than it is in

the DP system. Furthermore, the change in the stiffness ratio generates a

larger increase in the damping ratio in the NL than in the DP. In both cases,

the damping ratios of the NL is either slightly or considerably higher than

that of the DP metamaterial, while both metamaterial designs exhibit larger
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Fig. 11 Dispersion curves and corresponding damping ratios for the damped PC, DP,
and NL systems with rm ¼ 3, rk ¼ 1, and c0 ¼ 40.

Fig. 12 Dispersion curves and corresponding damping ratios for the damped PC, DP,
and NL systems with rm ¼ 3, rk ¼ 3, and c0 ¼ 40.
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damping ratios than the PC. Following the earlier analysis, the averaged

damping ratio ξavg is computed from the integration of (ξ1 + ξ2) over the
wavenumber κa ranging from 0 to π (as can be seen in Eq. (13)). The sonic

speed c0 is swept over a range of values while keeping the same mass and

stiffness ratios as well as the damping amount, by adjusting the value of

ω0 for each system, respectively. The outcome of this process is graphically

presented in Figs. 13 and 14 which correspond to the cases discussed in

Figs. 11 and 12, respectively. It is evident that the NL outperforms the

Fig. 13 Metadamping regions in the NL and DPmetamaterials (compared to the PC as a
datum) for rm ¼ 3, rk ¼ 1.

Fig. 14 Metadamping regions in the NL and DPmetamaterials (compared to the PC as a
datum) for rm ¼ 3, rk ¼ 3.
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PC and the DP systems in terms of total metadamping in both cases. The

amplified metadamping emergence in the NL is particularly observed with

the second set of parameters, validating the damping ratio diagrams pres-

ented in Fig. 12.

6. PARAMETRIC STUDY OF METADAMPING

As revealed in the previous section, the change in the stiffness ratio rk
enhanced the metadamping emergence in the NL metamaterial for a pre-

scribed set of damping coefficients and ratio rc. As such, it is imperative to

investigate this phenomenon further across a broader spectrum of properties

and material variations, while maintaining to the extent possible reasonable

constraints that render such comparisons just. We start by examining the

effect of increasing the damping amount (i.e., varying the values of c1 and c2)

as well as the choice of the ratio rc (reflecting the damping distribution

across the two materials). Fig. 15 combines the effect of the increasing

the damping intensity ratio β/ω0 with different choices of c1,2 for the

three phononic materials under consideration: the PC, DP, and the NL.

Other parameters used in the comparison are identical to those selected

in Fig. 12: rk ¼ rm ¼ 3 and c0 ¼ 40. In each subplot of Fig. 15, three sepa-

rate cases are considered: (1) c2 ¼ 0 (i.e., rc ¼ 0) and c1 ¼ βm2, (2) c1 ¼ 0

(i.e., rc ¼∞) and c2 ¼ βm2, and (3) rc ¼ 1 (with c1 ¼ c2 ¼ βm2/2). It is noted

that in the last case, the damping coefficients are reduced to half their

previous values to keep the total damping amount constant across the

board. It is first observed that the average damping ratio ξavg increases

linearly with an increase in the damping intensity ratio, irrespective of the

phononic material type, for all combinations of c1 and c2. However, it can

be seen that the damping distribution within the same phononic material

Fig. 15 Metadamping variation with the damping intensity ratio β/ω0 between the PC,
DP, and NL systems for rk ¼ rm ¼ 3 and c0 ¼ 40.
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plays an influential role in the emergent metadamping. Between the two

extreme cases corresponding to rc ¼ 0 (i.e., c2 ¼ 0) and rc ¼∞ (i.e., c1 ¼ 0),

the latter exhibits larger metadamping for the same amount of total damping

injected in the system. The metadamping in the case c1 ¼ c2 lies halfway

between the two extreme damping distributions.

With both damping coefficients c1 and c2 kept constant, the implications

of changing other material properties in the phononic design are also inves-

tigated. Fig. 16 shows the variation of metadamping with increasing

damping intensities for the two stiffness ratios rk ¼ 1 and rk ¼ 3 examined

earlier. As an initial takeaway, it can be seen that the metadamping

corresponding to rk ¼ 3 (and reflected by the metadamping metric ξavg)
quantitatively exceeds that of the rk ¼ 1 design for all three systems consid-

ered. The previous is also in line with Figs. 11 and 12. In addition, the linear

relationship between the damping intensity and the metric ξavg remains

intact. The relative enhancement of the metadamping across the different

phononic materials given a prescribed set of parameters may be computed

using the metricZ, illustrated in the rightmost panel of Fig. 16. For example,

ZNL
DP ¼ ξNL

avg�ξDP
avg (40)

defines the relative enhancement (or deterioration) of the emergent met-

adamping in the NL metamaterial as compared to a corresponding DP

metamaterial. Using the newly defined Z as a metric to assess relative met-

adamping improvements, or lack thereof, design charts that comprise vari-

ations in material properties such as mass, stiffness, and damping ratios, and

the interplay between them may be constructed. Investigating the damping

distributions across the different constituents of a phononic material allows

us to enhance the metadamping outcome. To do so, the stiffness ratio is

swept between the values of 0.01–100 and is varied against the ratio rc.

Contours of the relative metadamping metric Z as a function of both rk

Fig. 16 Effect of material properties (left) and phononic material type (right) on met-
adamping for rc ¼ 1.
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and rc are then generated. For a given (constant) amount of prescribed

damping η, the two damping coefficients c1 and c2 may be computed as

c1¼ η

ð1+ rcÞ (41a)

c2¼ η

ð1+ 1=rcÞ (41b)

For η ¼ 15 and maintaining ωPC
0 ¼ 100 throughout, Fig. 17 displays

the relative metadamping differences ZPC
DP, ZPC

NL, and ZDP
NL, as well as the

corresponding sonic speed as computed from Eq. (31). Recall that the

adjustedωDP
0 andωNL

0 can be obtained from Eqs. (38a) and (38c), respectively.

These charts show that the metadamping effectiveness is largely affected by the

distributionof damping among thedifferentmaterials of the phononicmaterial,

in addition to the material properties (represented by rk). For instance, in the

case of ZPC
NL, the metadamping enhancement is seen to increase as we move

further away from rk ¼ 1. Furthermore, a large metadamping effect accom-

panies large values of rk almost consistently irrespective of rc. For small rk,

however, the metadamping effect only becomes as significant with larger

rc values. Additionally, the maps also show unfavorable regions (shaded area

in Fig. 17) such as in the case of ZDP
NL, where the metadamping in the con-

ventional DP metamaterial outperforms its counterpart in the NL system.

In addition to confirming the metadamping emergence in resonant

metamaterials (e.g., the DP and NL systems) when compared to a common

benchmark in the form of a PC system, Fig. 17 also gives a physical insight into

how themetadamping in theNL system compares to that of a conventional DP

metamaterial. The ability of DP metamaterials to exhibit metadamping grad-

ually vanishes as the stiffness of the local resonator becomes very high to the

extent that constrains the internal vibrations and consequently renders the

internal resonance dynamics ineffective. This can be noticeably observed in

the leftmost plot of Fig. 17whereZPC
DP goes to zero at high values of the stiffness

Fig. 17 Contours of the relative metadamping differences ZPC
DP, ZPC

NL, and ZDP
NL with

variations in rk and rc. The corresponding sonic speed is provided for reference.
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ratio rk, signaling that the DP and PC systems basically become identical from

the standpoint of metadamping. NL metamaterials alleviate this situation by

providing a unit cell configuration where the resonator is not completely iso-

lated from the periodic chain and thus mitigates the effect of a high resonator

stiffness, all while still maintaining some attributes of an elastic metamaterial as

evident by the dispersion diagrams in Fig. 10. As a result, the metadamping in

the NL system outperforms that in the DP system and ZPC
NL exhibits values

greater than zero at higher values of rk. Once the resonator stiffness is reduced

again, the DP metamaterial recovers its metadamping advantage over the NL

design, as can be seen in the behavior of ZDP
NL. The latter corresponds to the

region marked “Deterioration” in the rightmost plot of Figure 17.

Analogous to the variations in rc, the analysis may be extended to depict

changes in the metadamping performance with mass and stiffness ratios that

span a larger design space. This is shown in Fig. 18 for constant damping

coefficients. The damping ratio ξ corresponding to the optical branch at

κa¼ π is provided in Fig. 19 for reference. Fig. 19 is used as a precautionary

measure to ensure that none of the results displayed in Fig. 18 pertain to an

overdamped system (i.e., ξ> 1) with a nonoscillatory response which is not

of interest in the current analysis. It is also worth noting that some parameter

Fig. 18 Contours of the relative metadamping differences ZPC
DP, ZPC

NL, and ZDP
NL for

identical damping coefficients (c1 ¼ c2 ¼ 2) and variations in rk and rm. ωPC
0 is kept

at 100 for all the considered cases. The corresponding sonic speed is provided for
reference.

Fig. 19 Damping ratio ξ of the optical dispersion branch at κa¼ π corresponding to the
relative metadamping maps provided in Fig. 18.
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choices result in negative values for both ZPC
DP and ZDP

NL; an indication of a

performance deterioration from a metadamping standpoint. On the con-

trary,ZPC
NL show improvement for the entire design space considered. These

charts constitute a comprehensive framework and serve as design guidelines

for the type of phononic material, the material properties, as well as the dis-

tribution of damping within the same phononic material to yield optimal

metadamping levels.

7. EFFECT OF CORE DAMPING MODEL

In the previous sections, the concept of metadamping was presented in

the context of viscous damping, i.e., simple dashpot elements. However,

accurate and realistic prediction of material damping typically requires differ-

ent, and often more complex, models. A natural extension of this work is to

investigate to what degree the intriguing metadamping attributes established

earlier apply to slightly more involved damping models. Means of accounting

for damping in structural mechanics include the use of complex elasticmoduli

(Castanier & Pierre, 1993; Sprik & Wegdam, 1998; Zhang, Liu, Mei, &

Liu, 2003) or inertial terms (Langley, 1994b), as well as stand-alone param-

eters which are functions of velocity (Hussein, 2009b; Hussein & Frazier,

2010). The choice of the damping model usually depends on the applica-

tion and is critical to minimize discrepancies at the experimental stages

(Adhikari & Phani, 2009; Phani & Woodhouse, 2007, 2009). Here, we

extend the previous discussion to the viscoelastic regime and specifically

the Maxwell element (see Fig. 20) to model the viscoelasticity (Frazier &

Hussein, 2015). The mathematical formulation developed in Section 1.2

is slightly modified to accommodate for the differences in the damping

mechanism as will be illustrated in the forthcoming section.

7.1 Viscoelasticity: Background and Modeling
Viscoelasticity is a property of a material that simultaneously exhibits viscous

and elastic behaviors. As a result, a coupling of the damping and the stiff-

ness properties within the material provides the damping element with

Fig. 20 A schematic of the Maxwell element where the stiffness (conservative) and
damping (nonconservative) elements are connected in series.
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an energy storage capability. Unlike viscous damping, which is primarily

observed in viscous fluids (Woodhouse, 1998), viscoelastic damping is a

hereditary model which takes into consideration the past and present history

of the dynamical motion whereby dissipation is attributed to a phase shift

between the displacement and stress fields (Bert, 1973; Nouh, Aldraihem, &

Baz, 2015). Owing to the nature of the viscoelasticity, the mathematical treat-

ment of the viscoelastic model includes internal states p̂j which are computed

using a convolution integral over an exponentially decaying kernel function

GðtÞ¼ μ1, je
�μ2, j t (where μ1, j and μ2, j are the relaxation pairs) capturing the

entire motion up to and including the current state (Wagner & Adhikari,

2003). For an equal pair of relaxation parameters, i.e., μj ¼ μ1, j ¼ μ2, j, the
j-th internal state is given by the following convolution integral (Frazier &

Hussein, 2015)

p̂j ¼
Z t

0

μje
�μjðt�τÞ _̂uðτÞdτ (42)

and, hence, Eq. (5) is rewritten as

M̂ €̂u +
X‘

j¼1

Ĉjp̂j + K̂û¼ 0 (43)

where ‘ is the total number of internal states. To attain the time derivative of

p̂j, the Leibniz integral rule is applied to Eq. (42) resulting in

_̂p j ¼�
Z t

0

μ2j e
�μjðt�τÞ _̂uðτÞdτ+ μj _̂u ¼ μj _̂u� p̂j

h i
(44)

following which, substituting back into Eq. (43) gives

M̂ €̂u +
X‘

j¼1

Ĉj
_̂u� 1

μj
_̂p j

" #
+ K̂û¼ 0 (45)

Eq. (45) in its current form cannot be readily used in the state-space rep-

resentation presented earlier since it would result in nonsquare matrices.

Premultiplying Eq. (44) by 1
μ2j
Ĉj and rearranging yields

1

μj
Ĉjp̂j�

1

μ2j
Ĉj

_̂p j�
1

μj
Ĉj

_̂u ¼ 0 (46)
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Plugging Eq. (46) into Eq. (45), the state-space matrices Â and B̂ can

now be cast as

Â¼

0 M̂ 0 0 … 0

M̂
X‘

j¼1

Ĉj � 1

μ1
Ĉ1 � 1

μ2
Ĉ2 … � 1

μ‘
Ĉ‘

0 � 1

μ1
Ĉ1

1

μ21
Ĉ1 0 … 0

0 � 1

μ2
Ĉ2 0

1

μ22
Ĉ2 … 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 � 1

μ‘
Ĉ‘ 0 0 …

1

μ2‘
Ĉ‘

2
666666666666666664

3
777777777777777775

(47a)

B̂¼diag �M̂ K̂
1

μ1
Ĉ1

1

μ2
Ĉ2 …

1

μ‘
Ĉ‘

� �
(47b)

where ŷT ¼ _̂u û p̂1 p̂2 … p̂‘

� �
is the new state vector. While multiple

internal states p̂j more accurately describe the viscoelasticworkingmechanism,

the focus of the present analysis is to highlight the differences between the vis-

coelastic and viscous damping and, therefore, a single kernel function (i.e.,

‘¼ 1) is sufficient to describe the viscoelastic phenomenon; Eq. (8) now reads

λ

0 M̂ 0

M̂ Ĉ �1

μ
Ĉ

0 �1

μ
Ĉ

1

μ2
Ĉ

2
6664

3
7775+

�M̂ 0 0

0 K̂ 0

0 0
1

μ
Ĉ

2
64

3
75

0
BBB@

1
CCCAŷ¼ 0: (48)

Upon computing the eigenvalues of Eq. (48), the real nonoscillatory

modes corresponding to the internal states can be found. The remaining

modes are complex pairs which dictate wave propagation in the dissipative

structure, as long as that the prescribed damping intensity β does not render

the system overdamped (i.e., ξ > 1). It is worth noting that in the extreme

cases where μ! 0 and μ!∞, Eq. (48) recovers the undamped and vis-

cously damped state matrices, respectively. With μ! 0, and since kM∝μ,
the spring in Fig. 20 softens and eventually disengages. On the other hand,

for μ!∞, the spring stiffens and effectively becomes a rigid connection. As

a consequence, most of the energy is dissipated in the damping element c.
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7.2 Metadamping in Viscoelastic Phononic Materials
7.2.1 Viscous-to-Viscoelastic Transition
In this section, we revisit the example in Fig. 11 and apply the viscoelastic

model for the same parameters to capture the transition between viscous to

viscoelastic damping. If the relaxation parameter μ¼ 300 is used to generate

the viscoelastic counterpart of Fig. 11, the result will be as depicted in Fig. 21

where the undamped and viscously damped cases are also plotted for refer-

ence. In all the shown cases, the optical branches as expected demonstrate

higher tendency to deviate from the undamped case given the higher fre-

quency range. The acoustical branches remain nearly unchanged. The intro-

duction of viscoelastic damping tends to increase the damped frequency

since some of the energy in the Maxwell element is conserved (unlike

the viscous model which effectively decreases the damped frequency). This

increase in the damped frequency of the optical branch widens the band gap,

an effect that is more pronounced in the case of the PC. Since part of the

energy is stored in the viscoelastic model, we expect the damping ratios

of the viscoelastic systems to be lower than those of the viscous ones across

all the phononic materials considered. This can be noticeably observed in the

lower panel of Fig. 21.

Fig. 21 Comparison of the dispersion curves and corresponding damping ratios for the
PC, DP, and NL systems under viscous and viscoelastic models.
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7.2.2 Band-Gap Limits
The evolution of the band-gap limits as well as the band-gap width Δωd for

all the different viscoelastic phononic materials is shown in Fig. 22 by the

solid curves. The dashed lines denote the viscous and undamped models

and are shown for comparison. The narrowest band gaps take place when

the phononic material has fully developed into the viscous damping regime.

During the transition, the band-gap width for the PC peaks in the vicinity of

μ¼ 200, while for theNL and DPmetamaterials, the largest band-gap width

occurs around μ¼ 120. These peaks happen as the energy storage capability

in the Maxwell element reaches its maximum value thus overshadowing the

amount of dissipated energy (Frazier & Hussein, 2015).

Despite the increase in the band-gapwidth, we anticipate themetadamping

emergence in the viscoelastic phononic materials to deteriorate. This can also

be inferred from the damping ratio ξ comparisons displayed in Fig. 21. Follow-

ing a similar procedure to that used to generate Fig. 13, and using μ¼ 300, the

Fig. 22 Evolution of band-gap limits for the PC, DP, and NL systems as a function of the
relaxation parameter μ. The figure illustrates the transition lines between the
undamped, viscoelastic and viscous regimes. Black and blue dashed lines represent
the band-gap limits of the undamped and the viscous models, respectively.
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sonic speed c0 is swept across a range of values and the corresponding met-

adamping ξavg for the viscoelastic phononic materials is evaluated. The relative

metadamping performances of the PC, DP, and NL systems are shown in

Fig. 23A. Further, a comparison of the emergent metadamping between the

viscoelastic and the viscous systems is presented in Fig. 23B–D. Examining

these patterns, it can be seen that the sensitivity of the metadamping to the

damping model decreases at lower sonic speeds where, for the given relaxation

parameter, the viscoelastic model becomes nearly viscous.

Finally, the evolution of metadamping with the change in the damping

regimes (i.e., the degree of the hereditary model) is computed as a function

of μ for the different phononic materials in Fig. 24. The metadamping

increases as μ increases for all the phononic materials up until a certain degree

of saturation as the systems completely transition into the viscous regime. In

contrast to the PC, the DP and NL metamaterials exhibit a ξavg peak in the

neighborhood of the transition line between the viscous and viscoelastic

models. Such unique traits which manifest themselves from the integration
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Fig. 23 (A) Metadamping emergence in NL and DP metamaterials with viscoelastic
damping (μ ¼ 300). (B)–(D) Quantitative comparisons between the viscoelastic and
the viscous metadamping curves for the PC, DP, and NL systems, respectively.
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of the material damping with the different phononic materials open up new

avenues in material designs for optimal wave absorption as well as broadband

attenuation performances.

8. EXPERIMENTAL VALIDATION OF METADAMPING

In the previous sections, the concept of metadamping has been pres-

ented and analyzed in the context of lumped mass-spring-dashpot systems.

Although these simple models provide a clear demonstration of the concept,

with the added advantage of enabling closed-form analytical solutions, a

more elaborate model is needed to examine suitability for real-world appli-

cations and to enable proper experimental validation.

In this section, we examine metadamping in an experimental config-

uration, and a corresponding numerical model, in the form of an extended

all-aluminum beam with pillars periodically standing out—along the axial

axis—from one of the beam’s surfaces (see Figs. 25 and 26) (Bacquet &

Hussein, 2018). The pillars serve the role of the resonating substructures;

they are shaped by milling to ensure seamless connectivity. Our choice of a

medium with one-dimensional periodicity is only for ease of exposition as

the underlying dynamical behavior we are interested in takes place for any

dimension and is in fact independent of periodicity (Achaoui, Laude,

Benchabane, & Khelif, 2013). This investigation consists of two parts.

In the first part, we use experiments and corresponding finite-element

simulations applied to a four-celled finite-sized version of the pillared

Fig. 24 Metadamping in the PC, DP, and NL systems as a function of the relaxation
parameters μ. Transition between the different regimes is illustrated by the dotted lines.
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beam to provide evidence of metadamping. In the second part, we provide

a correlation of the observed behavior with the dispersion and damping

ratio diagrams for the unit cell from which the pillared beam structure

is formed.

8.1 Pillared Beam: One-Dimensional Metamaterial
We consider the following two test structures composed entirely from alu-

minum: a regular beam (unpillared) and a metamaterial beam (pillared). The

unpillared beam’s dimensions are 32 � 1 � 1 inches. The pillared beam has

the same underlying beam base, but is augmented with four squares pillars

(0.5� 0.5� 2 inches) which are periodically arranged along the axial direc-

tion. These pillars act as the local resonators; there is one pillar per unit cell.

Fig. 25 shows a photograph of both structures in the laboratory, and Fig. 26

depicts the corresponding numerical models. Throughout this section, the

Fig. 25 Photograph of the two experimental structures: the unpillared beam (left) and
the pillared beam (right).

Fig. 26 Numerical models of the two experimental structures: the unpillared beam (left)
and the pillared beam (right).
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color blue will represent the unpillared beam and the color red will represent

the pillared beam.

8.1.1 Experimental Setup
Each of the beam structures is suspended using nylon cords in order to sim-

ulate free-free boundary conditions. An accelerometer (PCB WJ35C65) is

attached at the center point of the cross section on one of the ends of the beam.

Impulsive excitations are applied with an impact hammer (PCB 086C02) at a

point located at the center of the opposite cross section, such that only the

longitudinal modes are excited and measured. The measurements are collected

with a NI-DAQ 9234 data acquisition system (the frequency rate is set to

25.6 kHz and the sample time is 5 s). Five time series are recorded and averaged

for each beam. The inertance spectrum is obtained by postprocessing the time

data using a commercial software package (MATLAB®, TheMathWorks Inc.,

Natick, MA, United States). Fig. 27A shows the experimental frequency

response functions (FRF) obtained by this process. The reader is referred to

the review article Hussein et al. (2014) and the recent article Al Ba’ba’a,

Attarzadeh, and Nouh (2017) for examples of other experimental setups for

phononic systems.

8.1.2 Numerical Model
The two beam structures are numerically modeled with the following pre-

scribed material properties: density of ρ¼ 2700 kg/m3, Young’s modulus of

E¼ 68.9 GPa, and Poisson’s ratio of ν¼ 0.33. Using the finite-element (FE)

method for spatial discretization, we adopt a viscoelastic damping model of

the form (Frazier & Hussein, 2015; Hussein & Frazier, 2013a; Wagner &

Adhikari, 2003)

M€uðtÞ+
Z t

k¼1

μe�μðt�τÞC _uðτÞdτ+KuðtÞ¼ f ðtÞ, (49)

where, for simplicity, the FE damping matrix C is assumed to be propor-

tional to the FE mass M and stiffness K matrices, such that C ¼ pM + qK.

The FE model consists of three-dimensional 8-node brick FE (total number

of elements in the unit cell are 4096 for the unpillared beam and 4352 for the

pillared beam). The parameters p and q, as well as a relaxation parameter μ, are
determined by a unique experimental material–structure curve-fitting proce-
dure described in Bacquet andHussein (2018), which has provided uswith the

values p ¼ 22, q ¼ 2.2 � 10�7, and μ ¼ 104. Information on the FE imple-

mentation is available in Hussein (2009 a); and information on the viscoelastic
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model adopted, and the application of Bloch’s theorem to that model, are

found in Frazier and Hussein (2015) and Hussein and Frazier (2013a). The

numerical FRFs (Figs. 27B) are shown to agree very well with their experi-

mental counterparts (Fig. 27A).

8.2 Evidence of Metadamping
To determine the presence of metadamping, we seek to show that the pillared

beam exhibits stronger temporal attenuation than the unpillared beam. This

may be demonstrated for a finite beam by examining the temporal response

due to impulse excitation, and for an infinite beam by examining the damping

ratio diagram obtained from a Bloch analysis on the unit cell.
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Fig. 27 (A) Experimental and (B) numerical frequency response functions for the
unpillared and for the pillared beams. (C) Experimental and (D) and numerical temporal
responses for the two beam structures. The green and yellow curves are the curve-fitted
exponential functions for the unpillared and pillared time signals, respectively, to deter-
mine their time decay rates. The form of impulse excitations are shown in the insets;
these are obtained by a hammer impact in the experimental case, and mathematically
synthesized in the numerical case.
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8.2.1 Finite Structure
The experimental temporal response for the same test structures investigated

in Fig. 27A to a particular profile of impulse excitation is shown in

Fig. 27C. To identify the presence of metadamping and quantify its inten-

sity, we compare the rate of time decay of the pillared beam and compare it

to that of the unpillared beam. The procedure is as follows. First, the first

derivative of the displacement response is evaluated. Then, the maxima,

which are the points where the derivative changes sign, are extracted. Expo-

nential functions of the form f(t) ¼ ae�bt are then curve-fitted to these

extracted response peaks, where the exponential decay constant b provides

a direct measure of the degree of dissipation.

With this approach, a metric for metadamping is defined as the ratio r ¼
bpil/bun, where “pil” and “un” denote pillared and unpillared, respectively.

A ratio greater than unity signifies positive metadamping, i.e., the time

response of the pillared beam decays faster than that of the unpillared beam.

Conversely, a ratio less than unity indicates negative metadamping [not cov-

ered here; see Frazier and Hussein (2015) and Bacquet and Hussein (2018)].

From the results of Fig. 27C, we report an experimental metadamping

ratio rexp¼ 1.49 which is indicative of nearly 50% positive metadamping, i.e.,

the pillared beam exhibits 50% higher dissipation than the unpillared beam for

this particular form of excitation.

A similar analysis is conducted using our FE beammodels by implementing

a time-integration scheme particularly suited for exponentially damped systems

(Adhikari & Wagner, 2004). In order to accurately replicate the experimental

setup, the initial displacement is modeled as a Gaussian excitationwhose param-

eters a and b are selected such that it matches the experimental impulse:

u0ðtÞ¼ e�
ðt�aÞ2
2b2 , (50)

where a¼ 0.01 and b¼ 8� 10�5. The time response of the beams are com-

puted for t¼ 0.4 s with a time step ofΔt¼ 3� 10�5 s. The results, which are

shown in Fig. 27D, give us a numerical metadamping ratio of rnum ¼ 1.09.

While the degree of the predicted metadamping is lower than the experi-

mental results, this confirms that the pillared beam exhibits higher dissipation

for the applied excitation profile.

8.2.2 Infinite Material
To elucidate the metadamping phenomenon, and what causes it in the finite

structure as we observed by brute-force simulations, we revisit the problem

157Metadamping: Dissipation Emergence



and examine it from the material point of view. This is done by performing a

dispersion analysis on the unit cells (both the unpillared and pillared) and com-

paring their damping ratio diagrams. The free equation of motion for each unit

cell is given by Eq. (49) with the force term on the right-hand side set to zero.

The dispersion band structure and corresponding damping ratio diagram are

obtained by assuming a Bloch solution of the form uðtÞ¼U
� ðκÞeiκx+ λt and

substituting it into Eq. (49). Upon transformation to state space, we obtain

the followingmatrix eigenvalue problem [details of the derivation are available

in Hussein and Frazier (2010, 2013a) and Frazier and Hussein (2015)]:
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(51)

This problem is solved for prescribed and real wavenumbers κ spanning the
first Brillouin zone (0 	 κa 	 π) which gives us wavenumber-dependent,

complex eigenvalues λs(κ) in the form

λsðκÞ¼�ξsðκÞωsðκÞ� iωdsðκÞ, s¼ 1,…,n, (52)

where n is the total number of modes. The imaginary part ωds represents the

damped frequency corresponding to the s-th Blochmode, and the real part is

the product of the wavenumber-dependent damping ratio ξs and, in the case
of Rayleigh (proportional) damping, the undamped frequency ωs. The dis-

persion diagram for both beam structures is shown in Fig. 28A and the

corresponding damping ratio diagram is plotted in Fig. 28B (we only show

the relevant portions of each diagram). The latter diagram provides us with

the level of dissipation that each Bloch mode exhibits.

We observe in the dispersion diagram (Fig. 28A) two curves cutting

through horizontally; these represent local resonances associated with pillar

motion. These curves couple with the underlying dispersion curves describ-

ing wave motion along the base beam structure and cause the hybridization

phenomenon that is characteristic of locally resonant metamaterials, as we

observed in the earlier sections dealing with lumped-parameter models.

The pillared beam dispersion curves clearly contrast with those of unpillared

beam as the latter curves do not exhibit any local resonances. Since our ear-

lier experimental focus has been in longitudinal displacements (and acceler-

ations), we specifically highlight the longitudinal modes and shade the other
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modes in gray. To rigorously identify which modes are longitudinal in the

dispersion diagram, we first sort the Bloch modes using an algorithm that

checks continuation of group velocities [which is a measure of the degree

of orthogonality between two vectors (Allemang, 2003)], and then calculate

the degree of longitudinal polarization following the method described in

Achaoui, Khelif, Benchabane, and Laude (2010). Polarization values range

from 0 (pure shear) to 1 (pure longitudinal).

The key feature in Fig. 28 is the green arrows that illustrate the transition

of the dispersion curves and damping ratios due to the inclusion of the pillar

in the unit cell. In the damping ratio diagram in particular, these arrows indi-

cate an increase in the level of dissipation. And since this takes place in the

frequency range of the excitation, the finite structure formed from this con-

stituent cell experiences increased dissipation, or metadamping, as we

observed in Figs. 27C and D.

8.3 Effect of Added Mass on Dissipation
Finally, it is important to ensure that the added mass of the pillar is not a

factor in the generation of metadamping. The unpillared beam has a volume

of Vun ¼ 32 in3 whereas the pillared beam has a volume of Vpil ¼ 34 in3.

Therefore, to show that the metadamping is due to the local resonance
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phenomena only and not due to the addition of extra mass that exhibits

material damping, we perform a similar analysis as that of Fig. 28D on an

unpillared beam that has the same volume as the pillared beam. The numer-

ical time responses and their curve-fitted exponential functions are shown

in Fig. 29. The metadamping ratio, here redefined as r¼ bun*/bun, is shown

to equal one; this confirms our hypothesis that metadamping emerges from

the presence of local resonance and not from the addition of more damped

material.

9. CONCLUSIONS

Metadamping is a resonance-enabled intrinsic damping emergence

phenomenon whereby the level of dissipation may be enhanced (or reduced)

in a metamaterial compared to a statically equivalent material with the same

mass and type and quantity of prescribed damping.While elastic metamaterials

are known to provide strong spatial attenuation inside band gaps, met-

adamping enables the additional trait of strong temporal attenuation across rel-

atively broad frequency ranges. The phenomenon takes place at regions in the

wavenumber-dependent damping ratio diagram where the dissipation is

shown to increase due to the inclusions of the resonances. In this chapter,
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we have provided a technical review of the concept for different types of res-

onances, namely local dipole, local monopole, and nonlocal. It is shown that

the quest for highmetadamping in resonantmetamaterials becomes a trade-off

between seeking the absolute highest metadamping (provided by DP

metamaterials) or a considerable metadamping effect across a wider choice

of resonator stiffnesses (provided by NL metamaterials). A parametric study

and an examination of the effects of viscous vs nonviscous damping are also

provided. The chapter concludes with a real-life experimental investigation of

metadamping in a pillared beam, where we show matching results with both

simulations and band-structure theory. Future researchmay take the phenom-

enon of metadamping to the microscale and to waves driven at prescribed

frequency.
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